�

MDIWindows for GB32 (Multiple Document Interface)

Contents;

Overview of MDI
The Example MDIWindows.g32
Initialisation
Window Creation
The Message Loop
Creating MDI Child Windows

Processing
 WM_MDIACTIVATE
Closing MDI Child Windows
Cleaning-up

Overview of MDI

The multiple document interface (MDI) is a specification that defines the standard user interface for applications written for Microsoft® Windows®.

Extensive support for MDI applications is provided by Windows. An MDI application typically supports more than one document window at the same time. Each of the separate documents is displayed in its own window and the user can navigate through the different windows either by using the window sizing facilities or through using the extended menu options.

The MDI application differs slightly from a SD (Single Document) application in that any relevant data/text/graphics is displayed in a child window rather than the main window. Also, instead of one window as you would have for an SD application an MDI application has three. First the frame window; this is rather like the normal 'main window' but as already said no rendering is done here. Second is the client window; this window covers the client area of the frame window, and serves as the backdrop for all child windows; it does not have a caption bar. Thirdly, child windows; these child windows are where all documents are displayed.

The frame window is created by registering an application window class just like an SD application and dealing with any messages in the window callback function. It is customary to call this function FrameWndProc(). The client window class is predefined by windows and is created with a call to CreateWindow() specifying "MDICLIENT" as the window class.

The child windows like the frame window must be created by first registering a class before using CreateWindow(). The child window messages are dealt with by an application callback function as is the frame window.

Support for creating and manipulating child windows is through the client window. For example you can send a message to the client window to tile all child windows with;

~SendMessage(hwndClient, WM_MDITILE, 0, 0)

or cascade all child windows with;

~SendMessage(hwndClient, WM_MDICASCADE, 0, 0)

When the user opens or creates a document, the client window creates a child window for the document. The client window is the parent window of all the MDI child windows. Each child window has a sizing border, a title bar, a System menu, a Minimize button, and a Maximize button. The child window is automatically clipped and cannot appear outside of the client window.

In the example programme we will use API CreateMDIWindow() to create the child windows but two other methods exist; one, send the client window a message with WM_MDICREATE and two, using CreateWindowEx() function, specifying the WS_EX_MDICHILD extended style.

To destroy a child window, an MDI application sends a WM_MDIDESTROY message to the MDI client window.

Many child windows can appear in the client window at any one time but only one can be active. The active child window is positioned in front of all other child windows, and its border is highlighted.

Windows keeps track of each child window's position in the stack of overlapping windows. This stacking is known as the Z order. The user can activate the next child window in the Z order by choosing the Next command from the System menu in the active window. An application can activate the next (or previous) child window in the Z order by sending a WM_MDINEXT message to the client window.

A user can activate an inactive child window by clicking within it and the MDI application can activate a child window by sending a WM_MDIACTIVATE message to the MDI client window. As the client window processes this message, it sends a WM_MDIACTIVATE message to the window procedure of the child window to be activated and to the window procedure of the child window being deactivated. Another way to activate when there are more than one child window is to use Ctrl+F6, this activates the next child window in the z-order.

To retrieve the handle of the active child window, the MDI application sends a WM_MDIGETACTIVE message to the client window.

Typically an MDI applications frame window should include a menu bar with a Window menu item and its corresponding pop-up menu. The Window pop-up menu should include command items that arrange the child windows within the client window or that close all child windows. The Window menu of a typical MDI application might include the following items.

Menu item	Purpose
Tile		Arranges child windows in a tile format so that each appears in its entirety in the
client window.

Cascade	Arranges child windows in a cascade format. The child windows overlap one
another, but the title bar of each is visible.

Arrange Icons	Arranges the icons of minimized child windows along the bottom of the client
window.

Close All	Closes all child windows.

Whenever a child window is created, Windows automatically appends a new menu item to the Window menu. The text of the menu item is the same as the text in the caption bar of the new child window. By choosing the menu item, the user can activate the corresponding child window. When a child window is destroyed, Windows automatically removes the corresponding menu item from the Window menu.

Windows can add up to ten menu items to the Window menu. When the tenth child window is created, Windows adds the More Windows item to the Window menu. Choosing this item causes the Select Window dialog box to appear. The dialog box contains a list box with the titles of all MDI child windows currently available. The user can activate a child window by choosing its title from the list box.

If your MDI application supports several types of child windows, tailor the menu bar to reflect the operations associated with the active window. To do this, provide separate menu resources for each type of child window the application supports. When a new type of child window is activated, the application should send a WM_MDISETMENU message to the client window, passing to it the handle of the corresponding menu.

When no child window exists, the menu bar should contain only items used to create or open a document.

When the user is navigating through an MDI application's menus by using cursor keys, the keys behave differently than when the user is navigating through a typical application's menus. In an MDI application, control passes from the application's System menu to the System menu of the active child window, and then to the first item on the menu bar.

An MDI application controls the size and position of its child windows by sending messages to the MDI client window. To maximize the active child window, the application sends the WM_MDIMAXIMIZE message to the client window. When a child window is maximized, its client area completely fills the MDI client window. In addition, Windows automatically hides the child window's title bar, and adds the child window's System menu icon and Restore icon to the MDI application's menu bar. The application can restore the client window to its original (premaximized) size and position by sending the client window a WM_MDIRESTORE message.

An MDI application can arrange its child windows in either a cascade or tile format. When the child windows are cascaded, the windows appear in a stack. The window on the bottom of the stack occupies the upper left corner of the screen, and the remaining windows are offset vertically and horizontally so that the left border and title bar of each child window is visible. To arrange child windows in the cascade format, an MDI application sends the WM_MDICASCADE message. Typically, the application sends this message when the user chooses the Cascade command from the Window menu.

When the child windows are tiled, Windows displays each child window in its entirety overlapping none of the windows. All of the windows are sized, as necessary, to fit within the client window. To arrange child windows in the tile format, an MDI application sends a WM_MDITILE message to the client window. Typically, the application sends this message when the user chooses the Tile command from the Window menu.

An MDI application should provide a different icon for each type of child window it supports. The application specifies an icon when registering the child window class. Windows automatically displays a child window's icon in the lower portion of the client window when the child window is minimized. An MDI application directs Windows to arrange child window icons by sending a WM_MDIICONARRANGE message to the client window. Typically, the application sends this message when the user chooses the Arrange Icons command from the Window menu.

To receive and process accelerator keys for its child windows, an MDI application must include the TranslateMDISysAccel() function in its message loop. The loop must call TranslateMDISysAccel() before calling the TranslateAccelerator() or DispatchMessage() functions.

Accelerator keys on the System menu for an MDI child window are different from those for a non-MDI child window. In an MDI child window, the ALT+ - (minus) key combination opens the System menu, the CTRL+F4 key combination closes the active child window, and the CTRL+F6 key combination activates the next child window.

The Example MDIWindows.g32

A standard MDI (Multiple Document Interface) example using a text window class and a graphical window class in addition to the frame window.

The example called ' MDIWindows.g32' should be included.

The example creates a frame window, client window and two types of child windows; the first type of child window displays some simple text, each window using a different size font and the second displays randomly coloured/sized rectangles.

Three menus are used to reflect the different applications conditions; The first menu is the default menu when no child windows are displayed and contains three items.

 1. New Text Window
 2. New Rectangle Window
 3. Exit

When the user selects 'New Text Window' the menu will change to reflect the appropriate condition, this new menu has many more items. When the user selects 'New Rectangle Window' the menu will change again to reflect the appropriate condition. As the user selects different child windows within the client area the menus will change accordingly.

As with other examples in this series the registering and creation of Windows should be familiar so the details will not be reiterated, but with this example you will see in Function InitApp() that three window classes are registered. At the top of the listing the three window class names are declared;

Initialisation

Global g_szFrameClass As String = "MdiFrame" + #0
Global g_szTextClass As String = "MdiTextChild" + #0
Global g_szRectClass As String = "MdiRectChild" + #0

These names are self explanatory; for each window class the 'wndclass' Type elements are filled in appropriately and then a call to RegisterClass(), if failed we return False and exit the programme.

 This is repeated for each class we need to register.

If !RegisterClass(wndclass)
Return False
EndIf

You will notice that the two child window classes registered have their cbWndExtra member equalling 4.

wndclass.cbWndExtra = 4

This reserves extra memory when a window is created from this class. Each child window of a certain class is managed by a single callback function so there has to be a way to distinguish one window from another and associate various attributes or properties to that particular window.

After registering the three classes we load the different menus and the keyboard accelerator from the resource and retrieve the sub menu handles for the Window sub-menu of each menu.

// Obtain global handles to three possible menus
g_hMenuInit = LoadMenuRes(":MdiRes", "MdiMenuInit")
g_hMenuText = LoadMenuRes(":MdiRes", "MdiMenuText")
g_hMenuRect = LoadMenuRes(":MdiRes", "MdiMenuRect")

g_hMenuInitWindow = GetSubMenu(g_hMenuInit, INIT_MENU_WINDOW_POS)
g_hMenuTextWindow = GetSubMenu(g_hMenuText, TEXT_MENU_WINDOW_POS)
g_hMenuRectWindow = GetSubMenu(g_hMenuRect, RECT_MENU_WINDOW_POS)

// Load accelerator table
g_hAccel = LoadAcceleratorsRes(":MdiRes", "MDIDEMO")

These global handles will be used throughout the code.

Window Creation

After the call to InitApp() the frame window is created;

// Create the frame window
g_hWndFrame = CreateWindowEx(WS_EX_CLIENTEDGE, _
g_szFrameClass, V:g_szTitleName, _
WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN, _
CW_USEDEFAULT, CW_USEDEFAULT, _
CW_USEDEFAULT, CW_USEDEFAULT, _
Null, g_hMenuInit, hInstance, Null)

Notice that unlike the previous examples in this series we add the Init menu to the main window here, g_hMenuInit. You can do the same with the other examples. The function FrameWndProc() is our callback for the main window and the first message to arrive is WM_CREATE. This is where we create the client window with the class "MDICLIENT".

In the function FrameWndProc() we have;

Static hwndClient As Handle, count As Int
Local hwndChild As Handle, sTitle As String
Local clientcreate As CLIENTCREATESTRUCT

Select uMsg
Case WM_CREATE // Create the client window

ccs.hWindowMenu = g_hMenuInitWindow
ccs.idFirstChild = ID_FIRSTCHILD

hwndClient = CreateWindow("MDICLIENT", _
Null, _
WS_CHILD | WS_CLIPCHILDREN | WS_VISIBLE, _
0, 0, 0, 0, hWnd, 1, g_hInstance, _
*ccs)
Return 0

The CLIENTCREATESTRUCT Type is a small structure and is;

Type CLIENTCREATESTRUCT
hWindowMenu As Handle
idFirstChild As Int
EndType

where;

hWindowMenu
The Window menu used for controlling MDI child windows. As each child window is
created, windows adds their titles to the Window menu as menu items. The user
can then activate a child window by choosing its title from the Window menu.

idFirstChild
	The identifier of the first MDI child window. The first MDI child window created is
assigned this value by Windows. Additional windows are created with incremented
window identifiers. When a child window is destroyed, Windows immediately reassigns
the window identifiers to keep their range contiguous.

When the user chooses a child window's title from the window menu, the frame window receives a WM_COMMAND message with the identifier in the wParam parameter. You should specify a value for the idFirstChild member that does not conflict with any other menu-item identifiers in the frame window's menu. For our example the idFirstChild = ID_FIRSTCHILD = 5000

The client window always has its background colour as COLOR_APPWORKSPACE.

The Message Loop

So, now we have a frame window with a menu and a client window; the programme now enters the message loop after retrieving the handle to the client window;

g_hWndClient = GetWindow(g_hWndFrame, GW_CHILD)

for a non-MDI app you would use this message loop when using a keyboard accelerator;

While GetMessage(msg, Null, 0, 0)
If !TranslateAccelerator(g_hWndFrame, g_hAccel, msg)
~TranslateMessage(msg)
~DispatchMessage(msg)
EndIf
Wend

However one more API is added for an MDI message loop;

' The message loop
While GetMessage(msg, Null, 0, 0)
If !TranslateMDISysAccel(g_hWndClient, msg) && _
 !TranslateAccelerator(g_hWndFrame, g_hAccel, msg)
~TranslateMessage(msg)
~DispatchMessage(msg)
EndIf
Wend

The TranslateAccelerator() API is normal when using a keyboard accelerator but for MDI apps you need TranslateMDISysAccel() API as well.

The TranslateMDISysAccel() function processes accelerator keystrokes for System menu commands of the multiple document interface (MDI) child windows associated with the specified MDI client window. The function translates WM_KEYUP and WM_KEYDOWN messages to WM_SYSCOMMAND messages and sends them to the appropriate MDI child windows.

Syntax -> TranslateMDISysAccel(hwndClient, msg)

hwndClient
Identifies the MDI client window.

msg
Points to a message retrieved by using the GetMessage or PeekMessage function. The
message must be an MSG structure and contain message information from the
application's message queue.

Return Value
If TranslateMDISysAccel() translates a message into a system command, the return
value is TRUE; otherwise, it is FALSE.

Creating MDI Child Windows

When the user selects a menu item from the init menu, either 'New Text Window' or 'New Rectangle Window' an appropriate message is sent to the function FrameWndProc() as a WM_COMMAND message with the LoWord of wParam containing the ID of the menu item selected, either IDM_NEWTEXT or IDM_NEWRECT. Here's the code for Case IDM_NEWTEXT;

Case IDM_NEWTEXT // Create a Text child window

count ++
sTitle = "Untitled " + Format$(count)

hwndChild = CreateMDIWindow(V: g_szTextClass, _
sTitle, 0, _
CW_USEDEFAULT, CW_USEDEFAULT, _
CW_USEDEFAULT, CW_USEDEFAULT, _
hwndClient, g_hInstance, 0)

Return 0

The var count is a local static variable that is incremented each time a new window is created so that we can give each window a unique title.

Then we create the new child window with CreateMDIWindow(). This call is somewhat like CreateWindow() but is specifically for MDI child windows. The var g_szTextClass tells the function which class, sTitle is the title. The next parameter is the style, we don't need to specify one for this example but you can specify WS_VSCROLL etc. CW_USEDEFAULT is used for x, y, width and height - Windows will position and size it for us. The parent for all child windows is hwndClient and the apps instance is g_hInstance.

Syntax -> CreateMDIWindow(lpClassName, lpWindowName, _
	 dwStyle, X, Y, nWidth, nHeight, hWndParent, hInstance, lParam)

lpClassName
Pointer to a null-terminated string specifying the window class of the MDI child window.
The class name must have been registered by a call to the RegisterClassEx function.

lpWindowName
Pointer to a null-terminated string that represents the window name. The system displays
the name in the title bar of the child window.

dwStyle
Specifies the style of the MDI child window. If the MDI client window is created with the
MDIS_ALLCHILDSTYLES window style, this parameter can be any combination of the
window styles listed in the description of the CreateWindow function. Otherwise, this
parameter can be one or more of the following values:

WS_MINIMIZE
Creates an MDI child window that is initially minimized.

WS_MAXIMIZE
Creates an MDI child window that is initially maximized.

WS_HSCROLL
Creates an MDI child window that has a horizontal scroll bar.

WS_VSCROLL
Creates an MDI child window that has a vertical scroll bar.

X
Specifies the initial horizontal position, in client coordinates, of the MDI child window. If
this parameter is CW_USEDEFAULT, the MDI child window is assigned the default
horizontal position.

Y
Specifies the initial vertical position, in client coordinates, of the MDI child window. If this
parameter is CW_USEDEFAULT, the MDI child window is assigned the default vertical
position.

nWidth
Specifies the initial width, in device units, of the MDI child window. If this parameter is
CW_USEDEFAULT, the MDI child window is assigned the default width.

nHeight
Specifies the initial height, in device units, of the MDI child window. If this parameter is
set to CW_USEDEFAULT, the MDI child window is assigned the default height.

hWndParent
Handle to the MDI client window that will be the parent of the new MDI child window.

hInstance
Handle to the instance of the application creating the MDI child window.

lParam
Specifies an application-defined value.

Return Values
If the function succeeds, the return value is the handle to the created window. If the
function fails, the return value is NULL.

Just as when you create a Window with CreateWindow(), CreateMDIWindow() sends WM_CREATE to the appropriate callback function as the window has been created but before it becomes visible. In this case when registering the class for the TextWindow, we specified ProcAddr(TextWndProc) as our callback.

In the function TextWndProc() we have for WM_CREATE the following;

Switch uMsg
Case WM_CREATE
// Allocate memory for window private data
count += 4
Pointer(pTextData) = HeapAlloc(GetProcessHeap(), _
HEAP_ZERO_MEMORY, SizeOf(TEXTDATA))
pTextData.iColor = IDM_BLACK
pTextData.colText = RGB(0, 0, 0)
pTextData.hFont = CreateFont(-(10 + count), 0, 0, 0, _
FW_DONTCARE, 0, 0, 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS, _
CLIP_DEFAULT_PRECIS, FIXED_PITCH, FF_MODERN, "Arial")
~SetWindowLong(hWnd, 0, pTextData)

// Save some window handles
hwndClient = GetParent(hWnd)
hwndFrame = GetParent(hwndClient)
Return 0

The var count is used to create a different sized font for each textwindow that is opened.

pTextData will hold the address of a memory block allocated from the ProcessHeap, this memory is not movable and is freed later with a call to HeapFree(). The memory block is used to hold the specific values pertinent to this window; when the next window is created a new memory block will be created and so on.

For this example, (the accepted way) the memory for each window that is created stores some values that are applicable to that window. For our example we create a Type TEXTDATA that will hold the values we require.

Type TEXTDATA
iColor As Int
colText As Int
hFont As Handle
EndType

iColor -> Stores the ID value of the associated colour, IDM_BLACK etc.

colText -> Stores the actual colour value for the text, RGB(0, 0, 0)

hFont -> Stores the handle of the font.

After these values have been filled in the address of the memory block for the Type TEXTDATA
is stored in the extra space we requested (wndclass.cbWndExtra = 4) when creating this specific
window class with the API SetWindowLong();

This address is retrieved from the window when other messages arrive so we know which window is being dealt with at any time. For instance when the user selects a colour change from the menu we retrieve the memory block address with GetWindowLong(hWnd, 0) - we can then set new values in the data block.

The vars hwndClient and hwndFrame are stored as Static vars here as they are used elsewhere in this function.

The new window will now be displayed. We have stored colour information and the handle to a font, these will be used to display text when WM_PAINT arrives. The first occurrence of WM_PAINT is just after the window is created.

Case WM_PAINT
// Paint the window
~BeginPaint(hWnd, ps)
Pointer(pTextData) = GetWindowLong(hWnd, 0)
hOldObj = SelectObject(ps.hdc, pTextData.hFont)
~SetTextColor(ps.hdc, pTextData.colText)
~GetClientRect(hWnd, rect)
~DrawText(ps.hdc, "'Ello World!", -1, *rect, DT_SINGLELINE _
| DT_CENTER | DT_VCENTER)
~SelectObject(ps.hdc, hOldObj)
~EndPaint(hWnd, ps)
Return 0

After BeginPaint() the address of the memory we stored earlier when processing WM_CREATE is retrieved with GetWindowLong(), we then select the font into the device context, set the text colour with SetTextColor(), and then draw the text. The old object is put back into the DC before EndPaint() is called.

Processing
 WM_MDIACTIVATE

Specific to MDI windows is the automatic menu change that a user sees depending on which state the application is in at any particular time. In the callback function TextWndProc() we also handle these menu messages by reacting on WM_MDIACTIVATE

If lParam = hWnd a child window is being activated so we set the active menu to reflect this change by sending a message to the client window telling it to set the desired menu, for this case we require g_hMenuTextWindow.

When lParam does not equal hWnd, in other words the focus is not a child window we set the menu back to the Init menu.

When there is
 more than one child window open
 we receive a WM_MDIACTIVATE message with wParam as the window handle for a window that is losing the focus. You may need to know which window is being de-activated for some applications but in this example it's not needed.

Case WM_MDIACTIVATE
// Set the Text menu if gaining focus
If lParam = hWnd
~SendMessage(hwndClient, WM_MDISETMENU, g_hMenuText,
_
g_hMenuTextWindow)
Else
// Set the Init menu if losing focus
~SendMessage(hwndClient, WM_MDISETMENU, g_hMenuInit,
_
g_hMenuInitWindow)
EndIf

// Check or uncheck menu item
Pointer(pTextData) = GetWindowLong(hWnd, 0)
~CheckMenuItem(g_hMenuText, pTextData.iColor, _
lParam = hWnd ? MF_CHECKED : MF_UNCHECKED)

~DrawMenuBar(hwndFrame)
Return 0

After sorting out which menu to display we check or uncheck menu items showing which colour has been selected for that window. First get the address of the memory block saved earlier which stores the colour being used for this window. Then check the item.

 lParam = hWnd ? MF_CHECKED : MF_UNCHECKED)

means - If lParam = hWnd use MF_CHECKED, if not use MF_UNCHECKED

Finally draw the menu bar on the main window hwndFrame, to make sure the changes are currently being displayed.

The Case WM_COMMAND just determines the colour for the text, unchecks a previous menu
check mark and sets a new one. To re-paint with the new colour InvalidateRect() is called.

The new colour is stored in the TEXTDATA memory block for future reference.

Case WM_COMMAND
Switch LoWord(wParam)
Case IDM_BLACK, IDM_RED, IDM_GREEN, IDM_BLUE
// Change the text color
Pointer(pTextData) = GetWindowLong(hWnd, 0)

hMenu = GetMenu(hwndFrame)

~CheckMenuItem(hMenu, pTextData.iColor, MF_UNCHECKED)

pTextData.iColor = wParam
~CheckMenuItem(hMenu, pTextData.iColor, MF_CHECKED)

pTextData.colText = colorText(wParam - IDM_BLACK)

~ InvalidateRect(hWnd, Null, False)
Return 0

Closing MDI Child Windows

When closing a window it is often a good idea to ask the user if this action is appropriate, perhaps they should save a document first(?). In our example a message box is displayed asking "Do you really wish to close + title of child window". In a real application you could set a flag representing if the document had been changed or not, if it has been changed prompt the user to save first before closing.

So, when the WM_CLOSE or WM_QUERYENDSESSION messages arrive get the title of that particular window and display it in the message box, if the user selects Yes, pass the message on for default processing with DefMDIChildProc(), this in turn will send WM_DESTROY to destroy the window.

Case WM_CLOSE, WM_QUERYENDSESSION
Local s As String*100
~GetWindowText(hWnd, V:s, 100) ' Get the window title
~SendMessage(GetParent(hWnd), WM_MDIRESTORE, hWnd, 0)
If IDYES != MessageBox(hWnd, "Do you really wish to close " + _
ZTrim$(s) + "?", "'Ello", MB_ICONQUESTION | MB_YESNO)
Return False
Else
' Use DefMDIChildProc() here!
Return DefMDIChildProc(hWnd, uMsg, wParam, lParam)
EndIf

Case WM_DESTROY
Pointer(pTextData) = GetWindowLong(hWnd, 0)
~DeleteObject(pTextData.hFont)
~HeapFree(GetProcessHeap(), 0, pTextData)
Return 0

Now is the time to cleanup, retrieve the address of the memory block allocated when the window was first created, delete the font and then free the memory. The code above shows this in action. Also for this example the child window is sent a WM_MDIRESTORE message so that if it is minimised
 it
 will be re-displayed as normal before closing.

If you have no need to ask the user if the window should be closed just use;

Case WM_CLOSE, WM_QUERYENDSESSION
Return DefMDIChildProc(hWnd, uMsg, wParam, lParam)

Another feature used in the example is 'Close All' - this attempts to close all opened child windows and is one of the menu items, it is also used when attempting to close down the application. The function FrameWndProc() traps the menu selection IDM_CLOSEALL

Case IDM_CLOSEALL // Attempt to close all children
~EnumChildWindows(hwndClient, ProcAddr(CloseEnumProc), 0)
Return 0

and calls EnumChildWindows() API. For each child window that is still open Windows will send
a message to our function CloseEnumProc() passing the window handle. This gives us the opportunity to ask the user if it's ok to close that window.

Function CloseEnumProc(hWnd As Handle, lParam As Int) As Int

If GetWindow(hWnd, GW_OWNER) // Check for icon title
Return True
EndIf

If !SendMessage(hWnd, WM_QUERYENDSESSION, 0, 0)
Return True
EndIf

~SendMessage(GetParent(hWnd), WM_MDIDESTROY, hWnd, 0)
Return True

EndFunc

The first part, GetWindow(hWnd, GW_OWNER) determines if the window is an Icon Title Window. Because MDI child windows may be minimized, an MDI application must avoid manipulating icon title windows as if they were normal MDI child windows. Icon title windows appear when the application enumerates child windows of the MDI client window. Icon title windows differ from other child windows, however, in that they are owned by an MDI child window.

The second part,
SendMessage(hWnd, WM_QUERYENDSESSION, 0, 0) sends a message to our child window function TextWndProc() asking if it's ok to close, if not, return true. Returning True instructs EnumChildWindows() to continue enumerating. When there are no more child windows to enum
erate the function EnumChildWindows() stops sending any more messages and ends, returning control to the application code.

The third part, SendMessage(GetParent(hWnd), WM_MDIDESTROY, hWnd, 0) sends the
destroy message to the client window asking it to destroy that particular child window.

The other child window type that draws rectangles is dealt with in a similar manner.

Cleaning up

When the programme is terminating we should cleanup the necessary bits and bobs. The initial menu is destroyed when the main window is destroyed but the other two menus will hang around if not
explicitly
 dest
ro
yed. Also we Unregister() the three window classes.

' Cleanup
~DestroyMenu(g_hMenuText) ' Destroy the two other menu's
~DestroyMenu(g_hMenuRect)
~DestroyWindow(g_hWndFrame)
~UnregisterClass(g_szRectClass, hInstance)
~UnregisterClass(g_szTextClass, hInstance)
~UnregisterClass(g_szFrameClass, hInstance)

End of Doc.

John Findlay

