APIListView with GB32

Windows is such a vast topic that one cannot hope to convey much in a short tutorial like this but I hope enough background material has been made available with this series of tutorials to encourage programmers to continue learning and continue to improve their skills.

The reader is assumed to have a working knowledge of GB32 and the Windows Operating System and to have digested the material from the other API Tutorials.

Although the document is one piece, headings are used as delimiters;

Contents;

The Example Programme APIListView.g32
The ListView's main styles
The ListView's additional styles
Setting the Header Column
Setting the data in the ListView Control
Dest
r
o
ying the ListView
Selecting Listview Items

The Example Programme APIListView.g32

A ListView control can display its items in one of four ways just like Windows Explorer. Items can be arranged having the 'large icon' view, 'small icon' view, 'list view' and 'report view'.

In this example we will present the report view with a column header.

�

The example listing is APIListView.g32, you should find it included. The necessary initialisation of constants and Type's is achieved with a call to Procedure InitAPIVars() which in turn calls the Procedure ListViewHeader() where most of the constants and Type's are declared for use with the common control 'ListView'.

The example program creates a Window with a menu using Windows API functions. The menu strip allows selections that facilitate the creation and destruction of the ListView control.

As with the previous examples in this series much of the code for this example is standard and will not be reiterated here.

As with other common controls a 'ListView' is a child of the main Window; it is created when the menu item "Make ListView" is selected. The code in Procedure DoCommands();

Procedure DoCommands(hWnd As Handle, uMsg As Int, wParam As Int, _
lParam As Int)

Switch LoWord(wParam)
Case IDM_MAKELIST
InitListView(hWnd)
LoadStringResource(":StrResource")
~EnableMenuItem(GetMenu(hWnd), IDM_MAKELIST, _
MF_DISABLED | MF_GRAYED)
~EnableMenuItem(GetMenu(hWnd), IDM_CLOSELIST, MF_ENABLED)

The call to InitListView(hWnd) creates the control, sets a few extended styles and initialises the column header.

First we retr
i
ev
e the client rectangle of the mai
n window which will allow us to
 size the child window control
appropriately
 with API GetClientRect(). Here
's
 the
 Function;

Function InitListView(hWnd As Handle) As Bool

~GetClientRect(g_hWndMain, *rect)

// Create the list view window.
g_hListView = CreateWindowEx(WS_EX_CLIENTEDGE, WC_LISTVIEW, _
"", WS_VISIBLE | WS_BORDER | WS_CHILD | LVS_REPORT | _
 LVS_SHOWSELALWAYS | LVS_SINGLESEL, _
0, 0, rect.Right, rect.Bottom, _
g_hWndMain, Null, g_hInstance, Null)

~SendMessage(g_hListView, LVM_SETEXTENDEDLISTVIEWSTYLE, 0, LVS_EX_FULLROWSELECT | LVS_EX_GRIDLINES)

Local lvColumn As LVCOLUMN
Local String szString

szString = "ID" + #0

//initialize the columns
lvColumn.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT
lvColumn.fmt = LVCFMT_LEFT

lvColumn.cx = 90
lvColumn.pszText = V:szString
~SendMessage(g_hListView, LVM_INSERTCOLUMN, 0, *lvColumn)

szString = "String" + #0
lvColumn.cx = 2000
lvColumn.pszText = V:szString
~SendMessage(g_hListView, LVM_INSERTCOLUMN, 1, *lvColumn)

Return True
EndFunc

Next the control is created with CreateWindowEx(); the WS_EX_CLIENTEDGE has been used in this example. The Global Const WC_LISTVIEW was declared in Procedure ListViewHeader() and is a string; "SysListVie
w32". Other flags have been set,

w
ithout WS_VISIBLE it will not become visible unless one makes an
explicit
 call to the function ShowWindow() and WS_CHILD must be set.

Also LVS_REPORT, LVS_SHOWSELALWAYS and LVS_SINGLESEL are used. These styles are self
explanatory
; (however!) we want a list view in the report style, one that will show whatever is selected at all times even if another app has the focus, and only allow a single selection at any one time.

g_hListView = CreateWindowEx(WS_EX_CLIENTEDGE, WC_LISTVIEW, _
"", WS_VISIBLE | WS_BORDER | WS_CHILD | LVS_REPORT | _
 LVS_SHOWSELALWAYS | LVS_SINGLESEL, _
0, 0, rect.Right, rect.Bottom, _
g_hWndMain, Null, g_hInstance, Null)

The list view's main styles;

LVS_ICON
	Icon View; each item appears as a full-sized icon with a label below it. The user can
	drag the items to any location in the list view window.

LVS_SMALLICON
	Small icon view; each item appears as a small icon with the label to the right of it. The
	user can drag the items to any location.

LVS_LIST
	List view; each item appears as a small icon with a label to the right of it. Items are
	arranged in columns and cannot be dragged to any arbitrary location by the user.

LVS_REPORT
	Report view; each item appears on its own line with information arranged in columns.
	The leftmost column can contain a small icon and label, and subsequent columns
	contain subitems as specified by the application. Unless the
	LVS_NOCOLUMNHEADER window style is also specified, each column has a header.
	When using the LVS_REPORT style with a list view control, the first column is always
	left-aligned. You cannot use LVCFMT_RIGHT to change this alignment.

The list view's additional styles;

LVS_ALIGNLEFT
	Items are left-aligned in icon and small icon view.

LVS_ALIGNTOP
	Items are aligned with the top of the list view control in icon and small icon view.

LVS_AUTOARRANGE
	Icons are automatically kept arranged in icon and small icon view.

LVS_EDITLABELS
	Item text can be edited in place. The parent window must process the
	LVN_ENDLABELEDIT notification message.

LVS_NOCOLUMNHEADER
	Column headers are not displayed in report view. By default, columns have headers in
	report view.

LVS_NOLABELWRAP
	Item text is displayed on a single line in icon view. By default, item text may wrap in
	icon view.

LVS_NOSCROLL
	Scrolling is disabled. All items must be within the client area.

LVS_NOSORTHEADER
	Column headers do not work like buttons. This style can be used if clicking a column
	header in report view does not carry out an action, such as sorting.

LVS_OWNERDATA
	Specifies a virtual list view control. With this you have

'
virtually
'
 an unlimited

	
number
of items.

LVS_OWNERDRAWFIXED
	The owner window can paint items in re
port view. The list view control sends a
	WM_DRAWITEM message to paint each item; it doe
s not send
separate
 messages
	for each subitem. The itemData member of the DRAWITEMSTRUCT structure
	contains the item data for the specified list view item.

LVS_SHAREIMAGELISTS
	The image list will not be deleted when the control is destroyed. This style enables the
	use of the same image lists with multiple list view controls.

LVS_SHOWSELALWAYS
	The selection, if any, is always shown, even if the control does not have the focus.

LVS_SINGLESEL
	Only one item at a time can be selected. By default, multiple items may be selected.

LVS_SORTASCENDING
	Items are sorted based on item text in ascending order.

LVS_SORTDESCENDING
	Items are sorted based on item text in descending order.

You can use the LVS_TYPEMASK mask to isolate the window styles that correspond to the
current view: LVS_ICON, LVS_SMALLICON, LVS_LIST, and LVS_REPORT.

You can use the LVS_ALIGNMASK mask to isolate the window styles that specify the alignment
of items: LVS_ALIGNLEFT and LVS_ALIGNTOP.

You can use the LVS_TYPESTYLEMASK mask to isolate the window styles that control item
alignment (LVS_ALIGNLEFT and LVS_ALIGNTOP) and those that control header appearance
and behavio
u
r (LVS_NOCOLUMNHEADER and LVS_NOSORTHEADER).

You can use the LVS_ALIGNMASK mask to isolate the window styles that specify the alignment
of items: LVS_ALIGNLEFT and LVS_ALIGNTOP. You can use the LVS_TYPESTYLEMASK mask to isolate the window styles that control item

You can change the view type after a list view control is created. To retrieve and change the
window style, use the GetWindowLong() and SetWindowLong() functions. To determine the
window styles that correspond to the current view, use the LVS_TYPEMASK value.

You can control the way items are arranged in icon or small icon view by specifying either the
LVS_ALIGNTOP (default) or LVS_ALIGNLEFT window style. You can change the alignment
after a list view control is created. To isolate the window styles that specify the alignment of
items, use the LVS_ALIGNMASK value.

On with the code;

After creating the listview control we need to set two extended styles for this example; these styles cannot be set on creation just like the toolbar example (remember?) they are explicitly set with SendMessage(). Unless we have LVS_EX_FULLROWSELECT the user can only select a list item by clicking on the leftmost column
 which is the only part that is highlighted
. This may be useful for some applications but generally I would prefer to select anywhere along the row
 and highlight the whole row
. The other extended style is LVS_EX_GRIDLINES, this gives a horizontal line separating each row in the list, a good visual aid for the user.

~SendMessage(g_hListView, LVM_SETEXTENDEDLISTVIEWSTYLE, 0, _
 LVS_EX_FULLROWSELECT | LVS_EX_GRIDLINES)

Unless
specifically
 requested when creating the listview, the control in 'report' mode will automatically have a column header.
W
e need to set the number of columns, the size of each column and the text that each header will display. A Type LVCOLUMN is used to pass information to Windows to effect these
settings
.

Setting the Header Column

Type LVCOLUMN
mask As Int
fmt As Int
cx As Int
pszText As Long
cchTextMax As Int
iSubItem As Int
iImage As Int
iOrder As Int
End Type

The Type LVCOLUMN contains information about a column in report view. This structure is used
both for creating and manipulating columns.

mask
	Variable specifying which members contain valid information. This member can be zero,
or one or more of the following values: LVCF_FMT The fmt member is valid.

LVCF_IMAGE
The iImage member is valid.

LVCF_ORDER
The iOrder member is valid.

LVCF_SUBITEM
The iSubItem member is valid.

LVCF_TEXT
The pszText member is valid.

LVCF_WIDTH
The cx member is valid.

fmt
Alignment of the column heading and the subitem text in the column. This member can
be one of the following values: LVCFMT_BITMAP_ON_RIGHT. The bitmap appears to
the right of text. This does not affect an image from an image list assigned to the header
item.

LVCFMT_CENTER
Text is
centred
.

LVCFMT_COL_HAS_IMAGES
The header item contains an image in the imagelist.

LVCFMT_IMAGE
The item displays an image from an image list.

LVCFMT_LEFT
Text is left-aligned.

LVCFMT_RIGHT
Text is right-aligned.

The leftmost column in a list view control must be left-aligned.

cx
Width of the column, in pixels.

pszText
If column information is being set, this member is the address of a null-terminated string
that contains the column heading text. If the structure is receiving information about a
column, this member specifies the address of the buffer that receives the column
heading text.

cchTextMax
Size of the buffer pointed to by the pszText member. If the structure is not receiving
information about a column, this member is ignored.

iSubItem
Index of subitem associated with the column.

iImage
Zero-based index of an image within the image list. The specified image will appear
within the column.

iOrder
Zero-based column offset. Column offset is in left-to-right order. For example, zero
indicates the leftmost column.

This structure is used with the LVM_GETCOLUMN, LVM_SETCOLUMN,
LVM_INSERTCOLUMN, and LVM_DELETECOLUMN messages.

First make a Local var as LVCOLUMN and
a
 string
 to contain the text for each column.

Local lvColumn As LVCOLUMN
Local String szString

Then
initialise
 the column, here we specify the mask as LVCF_FMT (the fmt member is valid), LVCF_WIDTH (the cx member is valid), LVCF_TEXT (the pszText member is valid).

For member fmt we specify LVCFMT_LEFT (text is left-aligned)

// initiali
s
e the columns
lvColumn.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT
lvColumn.fmt = LVCFMT_LEFT

Now insert each column with SendMessage()
specifying
 the
width of each column and the tex
t of the column.

szString = "ID" + #0
			
// Null terminated

lvColumn.cx = 90
			
// 90 pixels
		

lvColumn.pszText = V:szString(0)

~SendMessage(g_hListView, LVM_INSERTCOLUMN, 0, *lvColumn)

szString = "String" + #0
lvColumn.cx = 2000
			
// Could be
long
 text

lvColumn.pszText = V:szString(1)

~SendMessage(g_hListView, LVM_INSERTCOLUMN, 1, *lvColumn)

Done!

When adding items to the list we shall be using the LVCOLUMN Type again.

So now that we have a listview control the next step is to fill it with items; in this example we will retrieve text from a string resource and add
an ID and text to
 the list
 as strings
. After the call to InitListView(hWnd) another function is used to
retrieve

the text from the string resource, LoadStringResource().

Case IDM_MAKELIST
InitListView(hWnd)
LoadStringResource(":StrResource")
~EnableMenuItem(GetMenu(hWnd), IDM_MAKELIST, MF_DISABLED |
 _
	
 MF_GRAYED)
~EnableMenuItem(GetMenu(hWnd), IDM_CLOSELIST, MF_ENABLED)

Setting the data in the ListView Control

The function LoadStringResource() calls another function GetStringRes(lpBuff, V:g_strBuff) that extracts the text and sends it to the listview control.
 One could also fill the ListView with data from any other source.

In this example there are two items of text, the ID of the string resource and the actual string itself.

First the string ID is sent by using the Type LVCOLUMN specifying iSubItem = 0, this indicates that we are setting the text for the item (the leftmost column) and not a subitem (
subitems are
other col
umns to the right of the first

col
umn
);

I
n
f
unction
GetStringRes(
);

lvItem.mask = LVIF_TEXT
lvItem.pszText = V:strID
lvItem.iSubItem = 0
lvItem.iImage = 0
lvItem.iItem = SendMessage(g_hListView, LVM_GETITEMCOUNT, _
	 0, *lvItem)
nIndex = SendMessage(g_hListView, LVM_INSERTITEM, 0, _
	 *lvItem)

Fill in a LVITEM Type.
You can see above the first SendMessage() gets the item count
and
the second SendMessage() inserts an item. (Remember, an item is the
left most
column)

Next we add
the
 subitem;

lvItem.pszText = lpStr
lvItem.iSubItem = 1
~SendMessage(g_hListView, LVM_SETITEM, nIndex, *lvItem)

Specifying
 iSubItem = 1; this is for the next part of the row. In this example we have only used two columns but of course you can have many.

So, the above process is
 repeated for every item and subitem added to the listview.

Destorying the ListView

Another menu item selection will
destroy
 the listview control. "
Destroy
 ListView"

In the procedure DoCommands() we have;

Case IDM_CLOSELIST
~DestroyWindow(g_hListView)
~EnableMenuItem(GetMenu(hWnd), IDM_MAKELIST, MF_ENABLED)
~EnableMenuItem(GetMenu(hWnd), IDM_CLOSELIST, MF_DISABLED | _
		 MF_GRAYED)
g_hListView = 0

Please n
ote
,
 each time the listview is created or dest
royed we Enable or Disable & Gre
y the appropriate menu item which includes or precludes the selecti
on
 of that particular menu item.

Selecting Listview Items

Now that we have all the data in the listview we need a way to both monitor the user clicks and retrieve the selected items.

In our main Function WndProc()
W
M_NOTIFY message are sent to another function ListViewNotify() where we deal with messages for the ListView control;

Case WM_NOTIFY
Return ListViewNotify(hWnd, lParam)

When an item
(a row)
is dou
ble clicked
Windows
s
ends a
n

NM_DBLCLK

code
 as part of a WM_NOTIFY message
.

The Type used here is a NMITEMACTIVATE which include
s
 within it a Type NMHDR. The NMHDR looks somewhat like this;

Type
NMHDR

hwndFrom As Long
idFrom As Long
code As Long
EndType

where

hwndFrom
	:
control
window handle
 sending the message

idFrom		:
i
dentifier of control sending message

code		: the
n
otification

code
.
t
his member can be a control-specific notification code,

or it can be one of the
following common notification values:

NM_CLICK

	The user has clicked the left mouse button within the control.

NM_DBLCLK

	The user has double-clicked the left mouse button within the control.

NM_KILLFOCUS

	The control has lost the input focus.

NM_OUTOFMEMORY

	The control could not complete an operation because there was not enough memory

	
available.

NM_RCLICK

	The user has clicked the right mouse button within the control.

NM_RDBLCLK

	The user has double-clicked the right mouse button within the control.

NM_RETURN

	The control has the input focus, and the user has pressed the ENTER key.

NM_SETFOCUS

	The control has received the input focus.

We are only interested in the
NM_DBLCLK
 notificat
ion code so
in function ListView
Notify()

our
listing has;

Local nmia As Pointer To NMITEMACTIVATE
Pointer(nmia) = lParam
Local pItem As LVITEM
Local strID As String*10

This first part sets up a few vars for our use.

Then the Switch statement selects
the
NM_DBCLICK
 code from the
NMHDR Type which is part of the NMITEMACTIVATE Type.

Switch nmia.nmhdr.code

Case NM_DBLCLK
' Fill in the LVITEM Type
pItem.iItem = nmia.iItem ' Item
pItem.iSubItem = 1 ' Our first subitem
pItem.pszText = V:

g_strBuff

 ' address of buffer
pItem.cchTextMax = Len(g_strBuff) ' length of buffer

~SendMessage(g_hListView, LVM_GETITEMTEXT, nmia.iItem, *pItem)

pItem.iItem =
nmia.iItem

' Same item
pItem.iSubItem = 0 ' Item, not subitem
pItem.pszText = V:strID ' address of buffer
pItem.cchTextMax = Len(strID) ' length of buffer

~SendMessage(g_hListView, LVM_GETITEMTEXT, nmia.iItem, *pItem)

' For this example display in caption bar
~SetWindowText(g_hWndMain, ZTrim$(strID) + " " +
_

	

ZTrim$(g_strBuff))

Return 0

Hopefully
 you can see that
 the code
 first fills in a LVITEM Type
appropriately
 to SendMessage() and ge
t the subitem text for that row,
placing
 the data into the string
g_strBuff
.
 Se
condly, the code fills in the LVITEM Type
appropriately
 to SendMessage() so as to get the item text for that row. The row is identified by
nmia.iItem

For this example we just display both text's in the Window's caption bar; you could
at this point display a dialog box with an edit box, send the text to the edit box for the user to edit
;
 or any other
 course
 that would be appropriate
 for your application.

The
NMITEMACTIVATE

Type;

Type NMITEMACTIVATE
nmhdr As NMHDR
iItem As Int
iSubItem As Int
uNewState As Int
uOldState As Int
uChanged As Int
ptAction As POINTAPI
lParam As Long
uKeyFlags As Int
End Type

hdr

	
NMHDR structure that contains information about this notification message.

iItem

	
Index of the list view item. If the item index is not used for the notification, this member

	
will

contain -1.

I
SubItem

	
One-based index of the subitem. If the subitem index is not used for the notification or

	
the

notification does not apply to a subitem, this member will contain zero.

uNewState

	
New item state. This member is zero for notification messages that do not use it.

uOldState

	
Old item state. This member is zero for notification messages that do not use it.

uChanged

	
Set of flags that indicate the item attributes that have changed. This member is zero for

	
notifications that do not use it. Otherwise, it can have the same values as the mask

	
member of

the LVITEM structure.

ptAction

	
POINT
API
 structure that indicates the location at which the event occurred. This

	
member is

undefined for notification messages that do not use it.

lParam

	
Application-defined 32-bit value of the item. This member is undefined for notification

	
messages

that do not use it.

u
KeyFlags

	
Modifier keys that were pressed at the time of the activation. This member contains

	
zero or a

combination of the following flags: LVKF_ALT The ALT key is pressed.

	
LVKF_CONTROL The CTRL key is pressed.

	
LVKF_SHIFT The SHIFT key is pressed.

Enjoy
yourself
!
That's the end of this one.

John Findlay

