APIToolbar with GB32

�

EMBED
Word.Picture.6

�
�
�

Windows is such a vast topic that one cannot hope to convey much in a short tutorial like this but I hope as with 'APITut1' enough background material has been made available to encourage programmers to continue learning and continue to improve their skills. Other tutorials in this series will provide more of the information necessary to build programmes using API functions and will serve as reference material.

The reader is assumed to have a working knowledge of GB32 and the Windows Operating System and to have digested the material from APITut1.

Although the document is one piece, to aid in separating the sections I have used headings as delimiters;

Contents;

The Example Programme 'APIWindow.g32'

Creating the Window

Adding the Buttons

Button States

Button Styles

Creating the Toolbar Window

Processing the Messages

Changing the Toolbars Appearance

The Tooltip Text Code

The Dropdown Button Code

Changing the Toolbars Appearance

Appendix A

Appendix B

The Example Programme 'APIToolbar.g32'

This issue we will discover the delights of the ToolBar. There is a lot of fundamental material in this document because you may need the background information later.

The example is called APIToolbar.g32, you should find it included. Unlike the standard way of programming using Basic the 'API Way' requires some initialisation of constants and Type's and the occasional API call. In the first example 'APIWindow.g32' various constants etc. were declared in the Procedure InitAPIVars(). We need a few more declarations for use with the toolbar; another Procedure has been added for this purpose Procedure ToolBarHeader() and is called from within Procedure InitAPIVars().

The example program creates a Window with a Toolbar using Windows API functions and adds a menu bar. The menu is created in the same way as the example listing APIWindow.g32 and will not be explained here.

The code for this example has many similarities and the same structure as the APIWindow.g32 example. The listing calls InitApp() to register the window class, then creates the window and performs other initialisation tasks before entering the main message loop. We are using this time a different call to create the window, CreateWindow(). The API CreateWindow() is used to create windows, child windows, buttons, check boxes, combo boxes, in fact most windows that you see adorning your desktop.

API CreateWindow() has one less parameter than CreateWindowEx(), it does not support the inclusion of dwExStyle so you can't create a window with the extra styles with this API.

Syntax; Handle CreateWindow(lpClassName As Int, lpWindowName As Int, _

dwStyle As Int, x As Int, y As Int, nWidth As Int, _

nHeight As Int, hWndParent As Handle, hMenu As Handle, _

hInstance As Handle, lpParam As Int)

The full description of CreateWindow() is included in Appendix A.

Creating the Window

The window class is registered first as in the previous example, we then create the Window in Procedure WinMain(). The lines have been split for clarity.

g_hWndMain = CreateWindow(_

g_szClassName, _

g_szTitleName, _

WS_OVERLAPPEDWINDOW, _

CW_USEDEFAULT, CW_USEDEFAULT, _

610, 440, _

Null, Null, hInstance, Null)

So far, this is the same as in the example APIWindow.g32. The advent of WM_CREATE gives us the opportunity to create the menu with InitMenu(hWnd) before the call to CreateWindow() returns. Next comes the creation of the toolbar;

~CreateToolBar(g_hWndMain)

A Windows toolbar is a child window of the main window; it can have various styles, a number of buttons also with various styles and can conta
in other controls like comboboxe
s, listbox
e
s etc.

One can use either the CreateToolbarEx() or CreateWindowEx() API functions to create a toolbar. With CreateWindowEx() one first creates the toolbar and then adds the buttons; with CreateToolbarEx() one creates a set of buttons first before calling the API because one of the parameters passed to CreateToolbarEx() is the address to an array of button defining Type's.

In this example we are using CreateToolbarEx(). We will create the buttons initially with text integrated into the buttons and with a 'FLAT' style. The toolbar will have tooltips and be wrapable; wrapable means that if the user shrinks the window size the toolbar will 'wrap' the buttons if necessary creating a toolbar that is deeper than required for a single row of buttons.

If you use CreateWindowEx() to create a toolbar, you must specify WS_CHILD as part of the window style. The API CreateToolbarEx() includes the WS_CHILD style by default. The parent window (our main window) must be specified when creating the toolbar, however, you can change the toolbar's parent window later by using the TB_SETPARENT message.

The TOOLBARCLASSNAME ("ToolbarWindow32") window class is registered when the

common control dynamic-link library (Comctl32.dll) is loaded. To ensure that this DLL is loaded,

use the API InitCommonControls() function first. In the example this call is made within the

InitApp() function. ~InitCommonControls()

The function that creates the toolbar in the example is CreateToolBar(); At the top of the listing there is a global string array declared to hold the strings used for tooltips - g_sTTStr(9) As String. This array is assigned its strings here in our function CreateToolBar().

The Function;

Function CreateToolBar(hWndParent As Handle) As Handle

The handle of our main window is passed from WinMain() as the prospective parent

of the toolbar.

First some local vars are declared;

Local hWndTb As Handle

Local sTbString As String

At the top of the listing is the global const NUMBUTTONS = 14, this is used when allocating for the arrays of TBBUTTON Type's and also to tell CreateToolbarEx() how many buttons are required.

The var sTbString is used for the integrated button strings; Windows requires that each string must be separated by a Null char and the whole string must be terminated by two Null chars.

You can do it like this;

sTbString = "New" + #0 + "Open" + #0 + "Save" + #0

sTbString = sTbString + "Cut" + #0 + "Paste" + #0 + "Copy" + #0

sTbString = sTbString + "Print" + #0 + "Paint" + #0

sTbString = sTbString + "Table" + #0 + "Find" + #0 + #0

Or this;

sTbString = sprintf("New\0Open\0Save\0Cut\0Paste\0Copy\0 _

Print\0Paint\0Table\0Find\0\0")

Also the tooltip strings are assigned to the global string array g_sTTStr()

g_sTTStr(0) = sprintf("New\nDocument\0")

g_sTTStr(1) = sprintf("Open\nDocument\0")

g_sTTStr(2) = sprintf("Save\nDocument\0")

g_sTTStr(3) = sprintf("Cut\nSelection\0")

g_sTTStr(4) = sprintf("Paste\nClipboard\0")

g_sTTStr(5) = sprintf("Copy\nSelection\0")

g_sTTStr(6) = sprintf("Print\nDocument\0")

g_sTTStr(7) = sprintf("Paint\nArea\0")

g_sTTStr(8) = sprintf("Insert\nTable\0")

g_sTTStr(9) = sprintf("Find\nFirst Occurrence\0")

The sprintf function may not be familiar but it is handy. The '\n' is newline and the '\0' is a Null char - Chr$(0).

The var hWndTb will hold the handle of our toolbar child window until the function is exited. We will continue to access the toolbar window handle without having saved it as a global var by using API calls.

Before creating the buttons the code calls

g_hTbBmp = LoadMappedBitmapRes(":tbbmp", RGB(192, 192, 192), _

GetSysColor(COLOR_BTNFACE))

This is the same as the call used in APIWindow.g32 for the image included in the menu but this time we are using it for the toolbar bitmap. The colour of buttons may be set by the user but they will nevertheless be the system colour COLOR_BTNFACE. The background colour of this particular bitmap is RGB(192, 192, 192) and we need it to be
COLOR_BTNFACE
.

You can use COLOR_3DFACE if that's preferable;

COLOR_3DFACE = COLOR_BTNFACE

Adding the Buttons

After assigning the tooltip strings to the global string array g_sTTStr() the call to fill the values for the buttons sends the appropriate values; we have 10 buttons and 4 button separators; the last two buttons have the TBSTYLE_GROUP | TBSTYLE_CHECK styles which make them behave as a group - when one is pressed the other is automatically un-pressed.

An example of the calls to make a normal button;

 AddButton(1, 1, IDB_OPEN, TBSTYLE_BUTTON, 1, TBSTATE_ENABLED)

An example of a call to make a separator button;

 AddButton(3, Null, Null, TBSTYLE_SEP, Null, Null)

This is how to make a GROUP button;

AddButton(11, 8, IDB_TABLE, TBSTYLE_GROUP | TBSTYLE_BUTTON | _

 TBSTYLE_CHECK, 8, TBSTATE_ENABLED)

Another style used in the example listing is one for making a button with a dropdown button;

 AddButton(0, 0, IDB_NEW, TBSTYLE_DROPDOWN, 0, TBSTATE_ENABLED)

The call to AddButton() passes the values to be added to the set of TBBUTTON arrays. The array was defined at the top of the listing with;

Global Const NUMBUTTONS = 14

Global g_tbArray(NUMBUTTONS) As TBBUTTON

The Procedure AddButton() uses the index 'i' to access the individual arrays and assigns the appropriate values.

Procedure AddButton(i As Int, BitmapPos As Int, idCommand As Int, _ fsStyle As Int, StringPos As Int, fsState As Int) Naked

g_tbArray(i).iBitmap = BitmapPos

g_tbArray(i).idCommand = idCommand

g_tbArray(i).fsState = fsState

g_tbArray(i).fsStyle = fsStyle

g_tbArray(i).reserved1 = 0

g_tbArray(i).reserved2 = 0

g_tbArray(i).dwData = 0

g_tbArray(i).iString = StringPos

EndProc

The description of the Type TBBUTTON is as follows.

Type TBBUTTON

iBitmap As Long

idCommand As Long

fsState As Byte

fsStyle As Byte

reserved1 As Byte

reserved2 As Byte

dwData As Long

iString As Long

End Type

iBitmap

Index of button image. (starting with zero)

idCommand

Identifier of the button. This identifier is used in a WM_COMMAND message when the

button is clicked. If the fsStyle member is the TBSTYLE_SEP value, this member must

be zero. Our buttons range from IDB_NEW to IDB_FIND.

IDB_ -> identifier of button.

Button States

fsState

Button state flags. This can be a combination of the following values by using the '|' (Or)

operator; Normally you would set this to TBSTATE_ENABLED when creating the button.

Most of the following 'states' are run-time states that can be checked when messages

are received.

TBSTATE_CHECKED

The button has the TBSTYLE_CHECK style and is being clicked.

TBSTATE_ELLIPSES

The button's text is cut off and an ellipsis is displayed.

TBSTATE_ENABLED

The button accepts user input. A button that doesn't have this state is greyed.

TBSTATE_HIDDEN

The button is not visible and cannot receive user input.

TBSTATE_INDETERMINATE

The button is greyed.

TBSTATE_MARKED

	The button is marked. The interpretation of a marked item is dependent upon the

application.

TBSTATE_PRESSED

The button is being clicked.

TBSTATE_WRAP

The button is followed by a line break. The button must also have the

TBSTATE_ENABLED state.

Button Styles

fsStyle

Button style. This member can be a combination of values listed by using the '|' (Or)

operator; Not all styles can be combined.

TBSTYLE_AUTOSIZE

 	The button's width will be calculated based on the text of the button, not on the size of

the
image.

TBSTYLE_BUTTON

 	Creates a standard button.

TBSTYLE _CHECK

	This style creates a dual-state push button that toggles between the pressed and

nonpressed states each time the user clicks it. The button has a different background

colour when it is in the pressed state.

TBSTYLE _CHECKGROUP

	If this style is set a button will stay pressed until another button in the group is pressed,

much like radio buttons. It is equivalent to TBSTYLE _CHECK | TBSTYLE _GROUP

TBSTYLE_DROPDOWN

	This creates a button that is used as a 'drop-down-button', that is, it can be used to

display a list, normally a popup menu. If used in conjunction with a toolbar style that

includes TBSTYLE_EX_DRAWDDARROWS the button will also display a drop-down

arrow. Applications will receive a TBN_DROPDOWN message that is processed as part

of a WM_NOTIFY message. The example programme demonstrates this. For normal

buttons the WM_COMMAND is used to indicate that a button has been clicked.

If the user clicks the button instead of the dropdown arrow a WM_COMMAND message

will be sent.

TBSTYLE _GROUP

	When combined with TBSTYLE _CHECK, this style creates a button that stays pressed

until another button in the group is pressed.

TBSTYLE_NOPREFIX

	The button text will not have an accelerator prefix associated with it.

TBSTYLE_SEP

	This creates a separator; it is still treated as a button for creation purposes but will not

work as a button. It provides a small gap between buttons or button groups.

dwData

Application-defined value.

iString

Index of button string. (starting at zero)

Creating the Toolbar Window

So, the code calls this procedure AddButton() until all buttons are accounted for and then creates the toolbar child window. The call is;

hWndTb = CreateToolbarEx(hWndParent, _

WS_BORDER | WS_VISIBLE | TBSTYLE_TOOLTIPS | TBSTYLE_WRAPABLE, _

ID_TOOLBAR, _

9, _

Null, _

g_hTbBmp, _

V:g_tbArray(0), _

NUMBUTTONS, _

16, 16, _

16, 16, _

SizeOf(TBBUTTON))

CreateToolbarEx(parent,

 ' style,

 ' ID,

 ' numImages,

 ' hBMInst,

 ' hBmp,

 ' lpButArry,

 ' numButs,

 ' width & height of buttons,

 ' width & height of images,

 ' butstruct size)

parent

The first parameter is hWndParent, the parent of our toolbar

style

	The style of the toolbar. This can be a combination or the following values;

TBSTYLE_ALTDRAG

	If this style is used in combination with CCS_ADJUSTABLE the user is able change a

toolbar button's position by dragging it while holding down ALT key.

TBSTYLE_CUSTOMERASE

	Generates NM_CUSTOMDRAW notification messages when it processes

WM_ERASEBKGND messages.

TBSTYLE_FLAT

 	Creates a flat toolbar. If button text has been added it appears under button bitmaps. To

prevent repainting problems, this style should be set before the toolbar control becomes

visible.

TBSTYLE_LIST

 	If button text has been added it appears to the right of button bitmaps. To prevent

repainting problems, this style should be set before the toolbar control becomes visible.

TBSTYLE_REGISTERDROP

	Generates TBN_GETOBJECT notification messages to request drop target objects when

the pointer passes over toolbar buttons.

TBSTYLE_TOOLTIPS

 	Creates a tooltip control that an application can use to display descriptive text for the

buttons in the toolbar.

TBSTYLE_TRANSPARENT

 	Creates a transparent toolbar. This is a toolbar that is transparent but the buttons are

visible by their borders. Button text appears under button bitmaps. To prevent repainting

problems, this style should be set before the toolbar control becomes visible.

TBSTYLE_WRAPABLE

 	Creates a toolbar that can have multiple lines of buttons. Toolbar buttons can "wrap" to

the next line when the toolbar becomes too narrow to include all buttons on the same

line. Wrapping occurs on separation and nongroup boundaries.

You will notice that the style in the example also includes some of the normal window styles -

WS_BORDER and WS_VISIBLE. Whenever one creates a window of whatever type, be it a listbox, toolbar, etc one can also specify some of the normal window styles. See Appendix A for a full description of the API call CreateWindow(). For example without the style flag WS_VISIBLE our toolbar would remain hidden after its creation unless one used the API ShowWindow(hWnd, SW_NORMAL)

ID

The identifier of the control, (child-window, toolbar) In the Procedure InitAPIVars() the

ID value for our toolbar was defined - Global Const ID_TOOLBAR = 10000 so

the value is ID_TOOLBAR

numImages

	The number of images contained in the bitmap. For this particular case 9.

hBMInst

	This parameter is not used with GB32, set to Null.

hBmp

	The handle of our bitmap, g_hTbBmp. This is the bitmap loaded and converted with the

call to LoadMappedBitmapRes()

lpButArry

	The array of TBBUTTON Type's that were created earlier, V:g_tbArray(0)

numButs

	The number of buttons that the toolbar should display. This number also includes the

separators. NUMBUTTONS

width & height of buttons

	Default. 16x16

width & height of images

	Default. 16x16

There is another image :tbbmp1 included in the programme. The image sizes are 24x24 so that you can try it.

butstruct size

	With new versions of Windows different sized structures (Type's) are defined so the call

needs to know you've got it right.

Continuing after the toolbar has been created;

The TBSTYLE_EX_DRAWDDARROWS extended style needs to set after the toolbar has been created otherwise you will get a transparent toolbar!

~SendMessage(hWndTb, TB_SETEXTENDEDSTYLE, 0, _

 TBSTYLE_EX_DRAWDDARROWS)

Then we have the lines that tell the toolbar we want strings with our buttons; we will check the menu item IDM_TBSTRING at the same time. IDM_ -> identifier of menu

If g_bTbString

~SendMessage(hWndTb, TB_ADDSTRING, 0, V:sTbString)

' Check mark the menu item

~CheckMenuItem(GetSubMenu(GetMenu(hWndParent), 1), _

IDM_TBSTRING, MF_BYCOMMAND | MF_CHECKED)

EndIf

The global var g_bTbString is set at the top of the listing to True.

Notice the use of API's when we don't have a global var; when the menu is created we did not save the menu or submenu handles as global vars, but they are available by retrieving first the main menu handle with GetMenu(), and then retrieving the submenu with GetSubMenu(). The API CheckMenuItem() takes three parameters;

Syntax -> CheckMenuItem(hmenu As Handle, uIDCheckItem As Int, uCheck As Int)

hmenu

The menu handle

uIDCheckItem

This is the ID of the menu item

uCheck

The flag that control
s
 the interpretation of the uIDCheckItem parameter and the

state of the menu item's check-mark attribute. This parameter can be a combination of

either MF_BYCOMMAND or MF_BYPOSITION and MF_CHECKED or

MF_UNCHECKED.

MF_BYCOMMAND

	Indicates that the uIDCheckItem parameter gives the identifier of the menu item. The

MF_BYCOMMAND flag is the default, if neither the MF_BYCOMMAND nor

MF_BYPOSITION flag is specified.

MF_BYPOSITION

	Indicates that the uIDCheckItem parameter gives the zero-based relative position of the

menu item.

MF_CHECKED

	Sets the check-mark bitmap to the checked state.

MF_UNCHECKED

	Sets the check-mark bitmap to the unchecked state.

Onward; next comes the addition of the style TBSTYLE_FLAT. Just as the extended style flag TBSTYLE_EX_DRAWDDARROWS will cause a transparent toolbar if included in the original style parameter so does TBSTYLE_FLAT! Set it now. The global var g_bTbFlat was set at the top of the listing to True.

If g_bTbFlat

~SetWindowLong(hWndTb, GWL_STYLE, GetWindowLong(hWndTb, _

GWL_STYLE) | TBSTYLE_FLAT)

' Check mark the menu item

~CheckMenuItemGetSubMenu(GetMenu(hWndParent), 1), _

IDM_FLAT, MF_BYCOMMAND | MF_CHECKED)

EndIf

The CheckMenuItem() API is doing the same as the previous time.

Here we are using two API's together to retrieve and set the style of our window. First the API GetWindowLong(hWndTb, GWL_STYLE) retrieves the style from the toolbar, it is then or-ed with TBSTYLE_FLAT and then sent as a message with SendMessage() to the toolbar.

Every window has various values
imbedded when it's created, one can retrieve and/or set these values later with the two calls GetWindowLong() and SetWindowLong().

The GetWindowLong() function retrieves a 32 bit value that contain
s
 information about the specified window. The function can also retrieve a 32 bit value at the specified offset into the extra window memory of a window if the window class was registered with extra space allocated.

Syntax; GetWindowLong(hWnd As Handle, nIndex As Int)

hWnd

The window handle and indirectly the class to which the window belongs.

nIndex

To retrieve the values associated with the window use any of the following values.

If the window class was registered with extra space allocated you can store and retrieve

data here. Valid values are in the range zero through the number of bytes of extra

window memory, minus four; for example, if you specified 12 or more bytes of extra

memory, the first value would be at '0' offset, second at '4' and third value would be at 8.

Use WNDCLASS.cbWndExtra to allocate more memory associated with each window

created from that class.

Offsets to the window's values - these are negative values;

GWL_EXSTYLE

	Retrieves the extended window styles.

GWL_STYLE

	Retrieves the window styles.

GWL_WNDPROC

	The address of the window procedure, or a handle representing the address of

the window procedure. You must use the API CallWindowProc() function to call the

window procedure.

GWL_HINSTANCE

	Retrieves the handle of the application instance.

GWL_HWNDPARENT

	Retrieves the handle of the parent window, if any.

GWL_ID

	Retrieves the identifier of the window, if any.

GWL_USERDATA

	Retrieves the 32-bit value associated with the window. Each window has a

corresponding 32-bit value intended for use by the application that created the window.

The following values are also available when the hWnd parameter identifies a dialog box: A later issue of APITut will use resource dialogs.

DWL_DLGPROC

	Retrieves the address of the dialog box procedure, or a handle representing the address

of the dialog box procedure. You must use the CallWindowProc() function to call the

dialog box procedure.

DWL_MSGRESULT

	Retrieves the return value of a message processed in the dialog box procedure.

DWL_USER

	Retrieves extra information private to the application, such as handles or pointers.

If the function succeeds, the return value is the requested 32-bit value. If the function fails, the return value is zero.

The SetWindowLong() function changes an attribute of the specified window. The function also sets a 32-bit value at the specified offset into the extra window memory of a window.

SetWindowLong()

Syntax; SetWindowLong(hwnd As Handle, nIndex As Int, lNewLong As Int)

The difference to GetWindowLong() is that SetWindowLong() sets a value, so there is an extra parameter 'lNewLong' that is used to set this value.

At
the end of our function CreateToolBar(hWndParent As Handle)we return the handle of the toolbar but we are not using it throughout the example; as with the setting of the menu check mark we will be using API's to manage things for us instead of allocating a global var.

The last thing to initialise before entering the message loop is a popup menu for use with the dropdown button on the toolbar.

g_hPopUpMenu = CreatePopupMenu()

~AppendMenu(g_hPopUpMenu, MF_ENABLED, IDM_POP_NDOC, "New Document")

~AppendMenu(g_hPopUpMenu, MF_ENABLED, IDM_POP_NSND, "New Sound")

~AppendMenu(g_hPopUpMenu, MF_ENABLED, IDM_POP_NPIC, "New Picture")

IDM_POP_NDOC, IDM_POP_NSND and IDM_POP_NPIC are defined in the Procedure InitAPIVars() along with other constants.

Then set the focus to our window and very like the example APIWindow.g32, enter the main loop to process the messages.

~SetFocus(g_hWndMain)

' The message loop

While GetMessage(msg, Null, 0, 0)

~TranslateMessage(msg)

~DispatchMessage(msg)

Wend

Processing the Messages

Up to this point the code, excepting creating the toolbar, has been very similar to the previous example but now the messages that arrive with
 respect to the toolbar require
 explanation.

Just as in the previous example the WM_CREATE message is the time we create our menu and the WM_COMMAND messages are dealt with in Procedure DoCommands()

The first difference in this example's code is the WM_SIZE message. Every time the main window is re-sized you will receive this message. It's useful because there are times one has to reposition or re-size controls.

Case WM_SIZE

~SendMessage(GetDlgItem(hWnd, ID_TOOLBAR), WM_SIZE, 0, 0)

It is necessary to tell the toolbar when to re-size after every re-sizing of the main widow. Quite simply one sends the toolbar a message to re-size in the form of a WM_SIZE message. The code that looks after the toolbar will check the dimensions of the toolbar's parent window first and then re-size the toolbar appropriately. The expression GetDlgItem(hWnd, ID_TOOLBAR) within the SendMessage() function call retrieves the handle of our toolbar window. Why GetDlgItem? Well, although this call is defined as a function to retrieve the handle of a control in a dialog box, all child wi
ndows such as buttons, checkboxe
s or toolbars are controls and the function also works for a window as well as a dialog box. GetDlgItem() requires the handle of the parent window and the identifier of the control, in this case ID_TOOLBAR which was used when creating the toolbar, and will be used frequently throughout our example. It was defined in InitAPIVars() as 10000.

The message handling for WM_PAINT and WM_DESTROY are the same and will not be reiterated. The code to process the button clicks are dealt with in Procedure DoCommands() and will be explained shortly.

The Tooltip Text Code

There are two things we need to manage for our toolbar that do not fall into the same category as normal control messages like a button click, they are both sent as WM_NOTIFY messages and are for the button's tool-tip-text and the dropdown button. If you have created the toolbar with the TBSTYLE_TOOLTIPS style a tool-tip-text request message is sent when the user moves the mouse pointer over a button. The request comes in the form of a WM_NOTIFY message.

All WM_ notification messages have the lParam var containing the address of a Type NMHDR or another Type that will also include a NMHDR Type. These Type's vary depending on what sends the message, for instance the tooltip request sends the address of a TOOLTIPTEXT Type.

Type TOOLTIPTEXT

hdr As NMHDR

lpszText As Long

szText As String*80

hInst As Long

uFlags As Long

End Type

hdr

	A NMHDR Type which is required for all WM_NOTIFY messages.

lpszText

	A pointer to a string that contains or receives the tooltip text.

szText

	Buffer that receives the tooltip text. An application can copy the text to this buffer as an

alternative to specifying a string address with the above lpszText parameter.

hInst

	For GB32 this is not used.

uFlags

	A Flag that indicates how to interpret the idFrom member of the NMHDR structure that is

included in the structure. If this member is the TTF_IDISHWND value, idFrom is the

handle of the tool. Otherwise, idFrom is the identifier of the tool. You can find all the

constants in the file Comctl32_h.G32 translated by Eberhard Funck.

The NMHDR Type

Type NMHDR

hwndFrom As Long

idFrom As Long

code As Long

EndType

hwndFrom

The handle of the control sending message

idFrom

The identifier of the control sending message

code

The notification code. This member can be a control-specific notification code, or it can

be one of the following common notification values:

NM_CLICK

	The user has clicked the left mouse button within the control.

NM_DBLCLK

	The user has double-clicked the left mouse button within the control.

NM_KILLFOCUS

	The control has lost the input focus.

NM_OUTOFMEMORY

	The control could not complete an operation because there was not enough memory

available.

NM_RCLICK

	The user has clicked the right mouse button within the control.

NM_RDBLCLK

	The user has double-clicked the right mouse button within the control.

NM_RETURN

	The control has the input focus, and the user has pressed the ENTER key.

NM_SETFOCUS

	The control has received the input focus.

The code that deals with the tooltip and dropdown button notification messages is as follows; the WM_NOTIFY message may be either for a TOOLTIPTEXT Type or for a NMTOOLBAR Type, the declaring of the two local pointers reflects this. They are both made to equal lParam.

Case WM_NOTIFY

Local ptt As Pointer To TOOLTIPTEXT

Local pnmt As Pointer To NMTOOLBAR

Pointer(pnmt) = lParam

Pointer(ptt) = lParam

' If it's for the tooltiptext

Select ptt.hdr.code

Case TTN_NEEDTEXT

Local num As Int

Local ptb As Pointer To TBBUTTON

Local ptb1 As Pointer To String

' Get the index of the button (this includes separators)

num = SendMessage(GetDlgItem(hWnd, ID_TOOLBAR), _

TB_COMMANDTOINDEX, ptt.hdr.idFrom, 0)

Pointer(ptb) = V:g_tbArray(num)

' Tell Windows the address of string

ptt.lpszText = V:g_sTTStr(ptb.iString)

Return 0

End Select

'===

' If it's for the dropdown button

'===

Switch pnmt.nmhdr.code

Case TBN_DROPDOWN

Local mIndex As Int ' The ID number of selected menu item

' IDB_NEW is the first button

~SendMessage(GetDlgItem(hWnd, ID_TOOLBAR), TB_GETITEMRECT, _

 pnmt.iItem - IDB_NEW, *rect)

pt.x = rect.Left : pt.y = rect.Bottom

~ClientToScreen(hWnd, *pt)

mIndex = TrackPopupMenu(g_hPopUpMenu, TPM_LEFTALIGN | _

 TPM_RETURNCMD, pt.x, pt.y + 2, 0, hWnd, 0)

PrintMessage(hWnd, mIndex, lParam, "m")

Return False ' Indicates the TBN_DROPDOWN notification was handled.

EndSwitch

So, let's have a look at the tooltip first; after declaring some more local vars we send a message to the toolbar control requesting the zero-based offset of the button that requires the tooltip text in the form of a TB_COMMANDTOINDEX message.

num = SendMessage(GetDlgItem(hWnd, ID_TOOLBAR), _

TB_COMMANDTOINDEX, ptt.hdr.idFrom, 0)

This message needs the toolbar's window handle, GetDlgItem(hWnd, ID_TOOLBAR), and the identifier of the button which comes in the f
o
r
m of ptt.hdr.idFrom from the Type TOOLTIPTEXT with the WM_NOTIFY message. The return value (num) gives us the number

of the button
 starting from zero
, we can then use this number to access one of the strings held in our global string array g_sTTStr().

ptt.lpszText = V:g_sTTStr(ptb.iString)

You could use a simpler approach with ptt.lpszText = V:g_sTTStr(num)but if you use the more complex features of the toolbar then the ptb.iString will be more useful because ptb points to the
button's
TBBUTTON array.

The Dropdown Button Code

The dropdown button displays an arrow to the right of the button, when this is pressed a notification message is sent the our WndProc() function in the form of a WM_NOTIFY message. The lParam var points to a NMTOOLBAR Type; this
Type
also includes a NMHDR Type and a TBBUTTON Type. We use the information to display a popup menu just below the button
 which makes it look as if it is part of the button. The popup menu is displayed with the API TrackPopupMenu() and it requires its coordinates in screen coordinates. The values returned to us are in client coordinates.

Type NMTOOLBAR

nmhdr As NMHDR

iItem As Int

tbButton As TBBUTTON

cchText As Int

lpszText As Long

End Type

nmhdr

NMHDR structure that contains additional information about the notification message.

iItem

Command ID of the button associated with the notification.

tbButton

A TBBUTTON structure that contains information about the toolbar button associated

with the notification. This member only contains valid information with the

TBN_QUERYINSERT and TBN_QUERYDELETE notifications.

cchText

Count of characters in the button text.

pszText

Address of a character buffer that contains the button text.

If the WM_NOTIFY is for the dropdown button we trap the TBN_DROPDOWN message;

Switch pnmt.nmhdr.code

Case TBN_DROPDOWN

First, send the message TB_GETITEMRECT, this will give us the client coordinates of the button being pressed by filling in a RECT Type. We then use the client coordinate values returned, and

adjust to make them screen coordinates by using API ClientToScreen().ClientToScreen() uses a POINTAPI Type that was declared in our startup code as a global var pt As POINTAPI.

~SendMessage(GetDlgItem(hWnd, ID_TOOLBAR), TB_GETITEMRECT,_

pnmt.iItem - IDB_NEW, *rect)

pt.x = rect.Left : pt.y = rect.Bottom

~ClientToScreen(hWnd, *pt)

After we have converted the coordinates we can then display the popup menu with TrackPopupMenu().

mIndex = TrackPopupMenu(g_hPopUpMenu, TPM_LEFTALIGN | _

 TPM_RETURNCMD, pt.x, pt.y + 2, 0, hWnd, 0)

PrintMessage(hWnd, mIndex, lParam, "m")

Return False ' Indicates the TBN_DROPDOWN notification was

 ' handled.

The API TrackPopupMenu() is described in Appendix B

When the user selects one of the popup menu items the function returns with the ID of the selected item. The function PrintMessage() displays the value.

The function DoCommands() receives all other WM_COMMAND messages from
the function
WndProc().

The LoWord of wParam is used to select which command item has sent the message;

Switch LoWord(wParam)

Case IDB_NEW To IDB_FIND

PrintMessage(hWnd, wParam, lParam, "b")

For the button clicks we just send the value on to function PrintMessage() to be processed and displayed.

When IDM_EXIT arrives we use API PostMessage() to send a WM_DESTROY message to our application like so;

Case IDM_EXIT

~PostMessage(hWnd, WM_DESTROY, 0, 0)

Changing the Toolbars Appearance

You may want to change the appearance of the toolbar at run time so the example shows two instances of changing appearance. First we make the toolbar with or without integral strings. The way it's done in the example to first destroy the toolbar and then remake it. The global boolean var g_bTbString tells us whether it should be with or without strings.

If the menu item "ToolBar String" is selected we will receive the IDM_TBSTRING message; first the global var g_bTbString is toggled between True and False, then DestroyWindow() kills the toolbar, we then delete the bitmap object g_hTbBmp because it's remade in our function, and then re-create the toolbar with CreateToolBar(). Finally re-size the toolbar with a WM_SIZE message and check or uncheck the menu item which ever is appropriate. Simple!

Case IDM_TBSTRING ' Make ToolBar without strings

g_bTbString = !g_bTbString

~DestroyWindow(GetDlgItem(hWnd, ID_TOOLBAR))

~DeleteObject(g_hTbBmp)

~CreateToolBar(g_hWndMain) ' Create the toolbar again

~SendMessage(GetDlgItem(hWnd, ID_TOOLBAR), WM_SIZE, 0, 0)

' Set menu check mark

~CheckMenuItem(GetSubMenu(GetMenu(g_hWndMain), 1), IDM_TBSTRING, MF_BYCOMMAND | (g_bTbString ? MF_CHECKED : MF_UNCHECKED))

The other way of changing the toolbars appearance is to make it either FLAT or not FLAT.

If the menu item "Flat ToolBar" is selected we will receive the IDM_FLAT message; first the global var g_bTbFlat is toggled between True and False, we then retrieve the toolbars window style with GetWindowLong(), then check or uncheck the menu item.

Case IDM_FLAT ' Make ToolBar Flat or not

g_bTbFlat = !g_bTbFlat

style = GetWindowLong(GetDlgItem(hWnd, ID_TOOLBAR), GWL_STYLE)

~CheckMenuItem(GetSubMenu(GetMenu(hWnd), 1), IDM_FLAT, _

MF_BYCOMMAND | (g_bTbFlat ? MF_CHECKED : MF_UNCHECKED))

If g_bTbFlat

style |= TBSTYLE_FLAT // Bitwise OR

Else

style ^= TBSTYLE_FLAT // Bitwise XOR

End If

~SendMessage(GetDlgItem(hWnd, ID_TOOLBAR), TB_SETSTYLE, 0, style)

~InvalidateRect(GetDlgItem(hWnd, ID_TOOLBAR), Null, True)

Then we must alter the style flags to reflect the change we want.

If the we are changing from FLAT to a raised appearance we must change all the bits of the style value by XOR-ing it with TBSTYLE_FLAT; if we are doing it the other way around we must change it by OR-ing with TBSTYLE_FLAT.

Then send the TB_SETSTYLE message to the toolbar, and finally use
InvalidateRect() to make the too
lbar re-draw.

Good luck!

That's the end of this one. Appendix A and B follow.

John Findlay

Appendix A

CreateWindow()

This material also applies to CreateWindowEx(). What follows is the description of CreateWindow();

The CreateWindow() function creates an overlapped, pop-up, or child window. The passed parameters specify the window class, window title, window style, and (optionally) the initial position and size of the window. For child windows (including buttons etc.) the function also specifies the window's parent or owner. If you want the extended styles use CreateWindowEx().

An Overlapped Window is a top-level window that has a title bar, border, and client area and is intended to be an application's main window. Additionally it can have a window menu, minimise and maximise buttons, and scroll bars. Typically an overlapped window will include all of these components.

The WS_OVERLAPPED style creates a simple window with a title bar and border. The style of

WS_OVERLAPPEDWINDOW has a title bar, sizing border, system menu, minimise, maximise and close buttons.

Syntax; CreateWindow(lpClassName As Int, lpWindowName As Int, dwStyle As Int, _

x As Int, y As Int, nWidth As Int, nHeight As Int, hWndParent As Handle, _

hMenu As Handle, hInstance As Handle, lpParam As Int)

When creating child windows some of the parameters are treated differently to when creating an overlapped or main window. These parameters and conditions are described as follows;

lpClassName

In the listing this is a pointer to a Global String, the name of our window class. As with

RegisterClass() GB32 knows what type of variable is being passed so you only need

type the var; strictly one could use V:g_szClassName.

lpWindowName

Is a pointer to our Global String for the window title, or caption.

dwStyle

The following styles can be set;

	

WS_BORDER

	Creates a window that has a thin-line border.

WS_CAPTION

	Creates a window that has a title bar (includes the WS_BORDER style).

WS_CHILD

	Creates a child window. This style cannot be used with the WS_POPUP style.

WS_CHILDWINDOW

	Same as the WS_CHILD style.

WS_CLIPCHILDREN

	Excludes the area occupied by child windows when drawing occurs within the parent

window. This style is used when creating the parent window.

WS_CLIPSIBLINGS

	Clips child windows relative to each other; that is, when a particular child window

receives a WM_PAINT message, the WS_CLIPSIBLINGS style clips all other

overlapping child windows out of the region of the child window to be updated. If

WS_CLIPSIBLINGS is not specified and child windows overlap, it is possible, when

drawing within the client area of a child window, to draw within the client area of a

neighbouring child window.

WS_DISABLED

	Creates a window that is initially disabled. A disabled window cannot receive input from

the user. To change this after a window has been created, use EnableWindow().

WS_DLGFRAME

	Creates a window that has a border of a style typically used with dialog boxes. A

window with this style cannot have a title bar.

WS_GROUP

Specifies the first control of a group of controls. The group consists of this first

control and all controls defined after it, up to the next control with the WS_GROUP style.

The first control in each group usually has the WS_TABSTOP style so that the user can

move from group to group. The user can subsequently change the keyboard focus from

one control in the group to the next control in the group by using the direction keys. To

change this style after a window has been created, use SetWindowLong().

WS_HSCROLL

	Creates a window that has a horizontal scroll bar.

WS_ICONIC

	Creates a window that is initially minimised. Same as the WS_MINIMIZE style.

WS_MAXIMIZE

	Creates a window that is initially maximised.

WS_MAXIMIZEBOX

	Creates a window that has a Maximise button. Cannot be combined with the

WS_EX_CONTEXTHELP style. The WS_SYSMENU style must also be specified.

WS_MINIMIZE

	Creates a window that is initially minimised. Same as the WS_ICONIC style.

WS_MINIMIZEBOX

	Creates a window that has a Minimise button. Cannot be combined with the

WS_EX_CONTEXTHELP style. The WS_SYSMENU style must also be specified.

WS_OVERLAPPED

	Creates an overlapped window. An overlapped window has a title bar and a border.

Same as the WS_TILED style.

WS_OVERLAPPEDWINDOW

	Creates an overlapped window with the WS_OVERLAPPED, WS_CAPTION,

WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX

styles. Same as the WS_TILEDWINDOW style.

WS_POPUP

	Creates a pop-up window. This style cannot be used with the WS_CHILD style.

WS_POPUPWINDOW

	Creates a pop-up window with WS_BORDER, WS_POPUP, and WS_SYSMENU

styles. The WS_CAPTION and WS_POPUPWINDOW styles must be combined to

make the window menu visible.

WS_SIZEBOX

	Creates a window that has a sizing border. Same as the WS_THICKFRAME style.

WS_SYSMENU

	Creates a window that has a window-menu on its title bar. The WS_CAPTION style

must also be specified.

WS_TABSTOP

	Specifies a control that can receive the keyboard focus when the user presses

the TAB key. Pressing the TAB key changes the keyboard focus to the next control with

the WS_TABSTOP style. To change this style after a window has been created, use

SetWindowLong().

WS_THICKFRAME

	Creates a window that has a sizing border. Same as the WS_SIZEBOX style.

WS_TILED

	Creates an overlapped window. An overlapped window has a title bar and a border.

Same as the WS_OVERLAPPED style.

WS_TILEDWINDOW

	Creates an overlapped window with the WS_OVERLAPPED, WS_CAPTION,

WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX

styles. Same as the WS_OVERLAPPEDWINDOW style.

WS_VISIBLE

	Creates a window that is initially visible. This style can be turned on and off by using

ShowWindow() or SetWindowPos().

WS_VSCROLL

	Creates a window that has a vertical scroll bar.

x and y

If these parameters are set to CW_USEDEFAULT Windows selects the default position

for the window's upper-left corner and ignores the y parameter. CW_USEDEFAULT is

valid only for overlapped windows; if it is specified for a pop-up or child window, the x

and y parameters are set to zero.

Width and Height

Specifies the width, in device units, of the window. For overlapped windows nWidth is

either the window's width in screen co-ordinates or CW_USEDEFAULT. If

CW_USEDEFAULT is used Windows selects a default width and height for the window.

If CW_USEDEFAULT is specified for a pop-up or child window, nWidth and nHeight

are set to zero.

hWndParent

The window handle of the parent or owner of the child window. When creating a child

window this parameter must be valid. For an overlapped window this is not relevant, it

has no owner and should be Null.

hMenu

This parameter specifies a child-window identifier depending on the window style. For

GB32 this parameter is used when creating a child window but is not used when

creating a main window. The identifier can be used to determine the child windows

handle (or the control's window handle). It may also be used for sending or receiving

messages to/from the child window. The identifier must be unique for all child windows

or controls.

hInstance

Handle to the instance of the application that creates or is to be associated with the

window. For Windows NT this member is ignored. (GB32 App.hInstance)

lpParam

A pointer to a value to be passed to the window through the CREATESTRUCT

structure passed in the lParam parameter the WM_CREATE message. If an application

calls CreateWindow() to create a multiple document interface (MDI) client window,

lpParam must point to a CLIENTCREATESTRUCT Type.

Type CLIENTCREATESTRUCT

hWindowMenu As Handle

idFirstChild As Int

EndType

Returns

If the function succeeds, the return value is a handle to the new window. If the function

fails, the return value is Null.

Before returning the API CreateWindow() sends a WM_CREATE message to the window procedure (WndProc()). Also for overlapped, pop-up, and child windows CreateWindow() sends WM_CREATE, WM_GETMINMAXINFO, and WM_NCCREATE messages to the window.

If the WS_VISIBLE style is specified, CreateWindow() sends the window all the messages required to activate and show the window.

When creating child windows (or controls) the following pre-defined control classes can be

specified in the lpClassName parameter.

BUTTON

	Designates a small rectangular child window that represents a button the user can click

to turn it on or off. Button controls can be used alone or in groups, and they can either

be labelled or appear without text. Button controls typically change appearance when

the user clicks them.

COMBOBOX

	Designates a control consisting of a list box and a selection field similar to an edit

	control. When using this style, an application should either display the list box at all

	times or enable a drop-down list box. If the list box is visible, typing characters into the

	selection field highlights the firstlist box entry that matches the characters typed.	Conversely, selecting an item in the list box displays the selected text in the selection	field.

EDIT

	Designates a rectangular child window into which the user can type text from

the keyboard. The user selects the control and gives it the keyboard focus by clicking it

or moving to it by pressing the TAB key. The user can type text when the edit control

displays a flashing caret; use the mouse to move the cursor, select characters to be

replaced, or position the cursor for inserting characters; or use the BACKSPACE key

to delete characters.

LISTBOX

	Designates a list of character strings. Specify this control whenever an application

must present a list of names, such as file names, from which the user can choose. The

user can select a string by clicking it. A selected string is highlighted, and a

notification message is passed to the parent window.

MDICLIENT

	Designates an MDI client window. This window receives messages that control the MDI

application's child windows. The recommended style bits are WS_CLIPCHILDREN

and WS_CHILD. Specify the WS_HSCROLL and WS_VSCROLL styles to create an

MDI clientwindow that allows the user to scroll MDI child windows into view.

RichEdit	

Designates a Rich Edit version 1.0 control. This window lets the user view and edit text

with character and paragraph formatting, and can include embedded COM objects.

RICHEDIT_CLASS

	Designates a Rich Edit version 2.0 control. This controls let the user view and edit text

with character and paragraph formatting, and can include embedded COMobjects.

SCROLLBAR

	Designates a rectangle that contains a scroll box and has direction arrows at both

ends. The scroll bar sends a notification message to its parent window whenever the

user clicks the control. The parent window is responsible for updating the position of

the scroll box, if necessary.

STATIC

	Designates a simple text field, box, or rectangle used to label, box, or separate other

controls. Static controls take no input from the user and provide no output except

displaying text.

Windows 95: The system can support a maximum of 16,364 window handles.

Appendix B

TrackPopupMenu()

The TrackPopupMenu function displays a floating pop-up menu at the specified location and tracks the selection of items on the pop-up menu. The floating pop-up menu can appear anywhere on the screen.

Syntax: TrackPopupMenu(hMenu As Handle, uFlags As Int, x As Int, y As Int, _

 nReserved As Int, hWnd As Handle, prcRect As Int)

hMenu

Identifies the pop-up menu to be displayed. The handle can be obtained by calling

CreatePopupMenu() to create a new pop-up menu, or by calling GetSubMenu() to

retrieve the handle of a pop-up menu associated with an existing menu item.

uFlags

A set of bit flags that specify function options.

Use one of the following bit flag constants to specify how the function positions the shortcut menu horizontally.

TPM_CENTERALIGN

If this flag is set, the function centers the shortcut menu horizontally relative to the

coordinate specified by the x parameter.

TPM_LEFTALIGN

If this flag is set, the function positions the shortcut menu so that its left side is aligned

with the coordinate specified by the x parameter.

TPM_RIGHTALIGN

Positions the shortcut menu so that its right side is aligned with the coordinate specified

by the x parameter.

Use one of the following bit flag constants to specify how the function positions the shortcut menu vertically.

TPM_BOTTOMALIGN

If this flag is set, the function positions the shortcut menu so that its bottom side is

aligned with the coordinate specified by the y parameter.

TPM_TOPALIGN

If this flag is set, the function positions the shortcut menu so that its top side is aligned

with the coordinate specified by the y parameter.

TPM_VCENTERALIGN

	If this flag is set, the function centers the shortcut menu vertically relative to the

coordinate specified by the y parameter.

Use the following bit flag constants to determine the user selection without having to set up a parent window for the menu.

TPM_NONOTIFY

If this flag is set, the function does not send notification messages when the user clicks

on a menu item.

TPM_RETURNCMD

If this flag is set, the function returns the menu item identifier of the user's selection in

the return value.

Use one of the following bit flag constants to specify which mouse button the shortcut menu tracks.

TPM_LEFTBUTTON

If this flag is set, the user can select menu items with only the left mouse button.

TPM_RIGHTBUTTON

If this flag is set, the user can select menu items with both the left and right mouse

buttons.

x

Specifies the horizontal location of the shortcut menu, in screen coordinates.

y

Specifies the vertical location of the shortcut menu, in screen coordinates.

nReserved

Must be zero.

hWnd

Handle to the window that owns the shortcut menu. This window receives all messages

from the menu. The window does not receive a WM_COMMAND message from the

menu until the function returns.

If you specify TPM_NONOTIFY in the uFlags parameter, the function does not send messages to the window identified by hWnd. However, you must still pass a window handle in hWnd. It can be any window handle from your application.

prcRect

Ignored.

Return Values

If you specify TPM_RETURNCMD in the uFlags parameter, the return value is the

menu-item identifier of the item that the user selected. If the user cancels the menu

without making a selection, or if an error occurs, then the return value is zero.

If you do not specify TPM_RETURNCMD in the uFlags parameter, the return value is

nonzero if the function succeeds and zero if it fails. To get extended error information,

call GetLastError().

